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Abstract-Entirely Lagrangian nonlinear theory of thin elastic shells with finite rotations is
developed. Without restriction to small strains, accurate equilibrium equations and boundary
conditions are derived, utilizing the modified irrational tensor of change of curvature. The
introduction of variations of displacement vectors in place of variations of displacement com
ponents makes it possible to reduce computational efforts for deriving the shell equations. With
the aid of the present shell equations, the Hu-Washizu variational functional including the effects
of finite rotations at the shell boundary is generated.

I. INTRODUCTION

The formulation of geometrically nonlinear theory of thin elastic shells has received
much attention of research workers. Two approaches, hitherto, have been employed
for such problems: one is the Eulerian formulation[I-9] and the other the Lagrangian
formulation[6-18]. It is widely accepted that employing the Lagrangian formulation,
rather than the Eulerian one, is desirable for numerical analysis of geometrically non
linear shell structures.

The Lagrangian nonlinear theory of shells has been developed by many authors
using the Kirchhoff-Love hypothesis. A major difficulty, encountered in the formu
lation of a general theory, arises from the fact that the tensor of change of curvature
is an irrational function of displacements and their surface derivatives. In many papers,
on the basis of small-strain assumptions, the tensor of change of curvature has been
approximated in terms of polynomials of displacements and their surface derivatives.
Consequently, the appropriate static and geometric boundary conditions for nonlinear
shell theory have not been obtained[6-12, 17].

Pietraszkiewicz and Szwabowicz[l4] have derived the nonlinear equations for the
boundary conditions. However, the effects of finite rotations are not strictly taken into
account, since a new tensor of change of curvature used in [14] is reduced to a third
degree polynomial. Pietraszkiewicz[13], utilizing the modified irrational tensor of
change of curvature, has derived the Lagrangian equilibrium equations of shells
undergoing finite rotations. However, he has failed to derive the associated boundary
conditions consistent with the Lagrangian nonlinear shell theory. Pietraszkiewicz[16],
as well as Iura and Hirashima[l8] , has employed an irrational tensor of change of
curvature, defined as a difference between the curvature tensor of the deformed and
undeformed shell midsurface. In case of evaluating the external virtual work for the
couple, the former paper has utilized the vector, defined as a difference between the
deformed and undeformed normal vector, while the latter paper has employed the total
finite rotation vector. Linearizing the shell equations of both the papers, however, may
not lead to the best linear theory[6].

In this paper, the fully Lagrangian nonlinear theory of thin elastic shells is de
veloped under the Kirchhoff-Love hypothesis. Utilizing the resulting Lagrangian shell
equations, the Hu-Washizu variational functional, including the effects of the finite
rotations at the shell boundary, has been derived. When we derive the Lagrangian
equilibrium equations and the associated boundary conditions from the principle of
virtual work, we do not restrict the magnitude of rotations of shells, nor do we use the
small-strain assumptions. As a tensor of change of curvature, we employ the modified
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irrational tensor of change of curvature introduced by Budiansky[ll]. The use of this
tensor, employed also in [13], may lead to the best linear theory when the results
obtained here are linearized.

The appearance of finite rotations is one of the important features of any nonlinear
theory of shells. The rotations have been conventionally described by a proper or
thogonal tensor or a finite rotation vector. It is shown in [6-9] that the total finite
rotation vector on the shell boundary is described in terms of the finite rigid-body
rotation vector and another finite rotation vector. The latter rotation vector is caused
by the pure stretch of the principal axes of strain. Then the external virtual work for
the couple on the shell boundary has been expressed by the inner product of the total
finite rotation vector and the boundary-couple vector. However, some approximations
have been made on the corresponding terms in case of deriving the boundary condi
tions[6-9]. On the other hand, in this paper the external virtual work for the couple
on the shell boundary are evaluated without approximation. As a result, the effects of
finite rotations are strictly taken into account.

It appears that a cumbersome calculation is hard to be avoided in obtaining the
basic shell equations. This is because we take the variations ofthe surface strain tensor
and the tensor of change of curvature with respect to the displacement components.
In this paper, in place of variations of displacement components, the variations of
displacement vectors are introduced effectively. Therefore it becomes a straight for
ward matter to derive the equilibrium equations and the associated boundary conditions
without using the small-strain assumptions. In case of the constitutive equations we
assume that the shell materials consist of hyperelastic ones.

Using the basic shell equations derived here, and postulating the existence of an
elastic potential function for hyperelastic materials, a generalized variational principle
is generated. Starting from the principle of virtual work, the free functional, applicable
to geometrically nonlinear theory of shells with unrestricted rotations, has been derived.

Throughout this paper, the summation convention will apply to repeated Greek
indexes (in mixed position) with range 2.

2. NOTATIONS AND PRELIMINARIES

Let r(aa) be the position vector of the undeformed shell midsurface M, with con
vected curvilinear Gaussian coordinates aa, covariant surface base vectors aa = r ,a
and a unit vector n = !Ea~ aa x a~. The notation ( ),,,, denotes partial differentiation
on M, with respect to aa and Ea~ the permutation tensor of the undeformed midsurface.
As usual we define covariant components of the surface metric tensor aa~ = a",'a~ with
the determinant a = I a",~ I and of the surface curvature tensor b",~ = a",,~·n. Using
the Kronecker delta 8~, the contravariant components of the metric tensor aa~ are
defined by the relations a"'1I. a1l.~ = 8~.

The deformation of the shell midsurface from the undeformed reference config
uration M into the deformed configuration M can be described by the displacement
vector u = u"'aa + wn. With the deformed shell midsurface M, we associate a position
vector i = r + u, base vectors 8", = i,a, a unit normal vector it = !E"'~8", x 8~,

surface metric tensor a",~ = 8a'a~, and surface curvature tensor ba~ = 8a,~·it. For the
base vectors the following relations are satisfied[l]:

a",~ = HUa I ~ + u~ I ",) - b",~w,

W"'~ = i (u~ I a - Uo. I ~),

(la)

(lb)

(Ic)

(ld)

(Ie)

(If)
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(1g)

(Ih)

where ( ) la denotes the surface covariant differentiation at M. The displacement field
at an arbitrary point of the shell with the distance' from M is represented by

where

v = u + ,p,

p = ii - n.

(2)

(3)

Assuming that the Kirchhoff-Love hypothesis holds, the shell deformation can be
described by the surface strain tensor 'Yo.li and the tensor of change of curvature Ka~

defined by

'Ya~ = ! (aa~ - aaj3),

Ka~ = - (ba~ - ba~)'

(4a)

(4b)

In this paper, instead of Ka~' we employ the following modified tensor of change of
curvature Paj3 introduced by Budiansky[ll]:

(5)

It should be noted that the present tensor Pa~ has the attraction in discussing on general
theorems in the linear theory, and that it is considered the best choice from the point
of view of a number of criteria[ I, 11, 13]. Note also that the tensor paj3 is, in general,
an irrational function of the displacements, since it contains an invariant expressed by

- =
a

(6)

In the existing literature, because of complex form of Kali or Paj3, various variants of
approximate strain-displacement relations have been used on the basis of small-strain
assumptions. This is why there exist few investigations in which the effects of finite
rotations are strictly taken into account. .

Substituting eqns (1) into eqns (4) and (5) yields the strain-displacement relations.
The variation of the modified tensor of change of curvature in terms of displacement
components takes complex forms, since it contains the irrational function V (ala). Con
sequently, extensive computations may be needed to derive the fundamental equations
of the shell. In this work, the variation of displacement vectors in place of displacement
components is used effectively. The variation of displacement vectors has been used
also by Pietraszkiewicz[13], though appropriate boundary conditions have not been
obtained. This is owing to the fact that the variation of derivatives of displacement
vectors in the outward normal direction could not have been eliminated through in
tegration by parts along the boundary. The advantages of the usage of such variations
are that the variations of 'Yaj3 and Pali take more simple forms, and that computational
efforts for deriving the shell equations are significantly reduced. With the aid of the
orthogonality of i,. and ii, we obtain the variation of the surface strain tensor and the
modified tensor of change of curvature in terms of displacement vectors, represented
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by

where
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8'Yal> = ~ (8u,u·al> + aa·8U,>J)' (7a)

8pu13 = -[(8u",) 113 - aKl>.'Yl>.al>0U'K]·Ii + ! (b~O'YKI> + b~ 8'YKI»' f7b)

(8)

It should be emphasized that the variations of 'Yal> and pa13 are linear functions of 8u.

3. DEFORMATION OF BOUNDARY ELEMENTS

Let C be the boundary contour at M, defined by the equation ea = ears), where
s is the length parameter of C. We assume that in the reference configuration the lateral
shell boundary surface is rectilinear and orthogonal to M along C. With the boundary
contour C, we associate the unit tangent vector t = r'5' where ( )'5 denotes the dif
ferentiation with respect to s, and the outward unit normal vector "V = t x n.

After the shell deformation under the Kirchhoff-Love hypothesis, the orthonormal
triad "v, t and n is transformed into an orthogonal triad a v , at and ii, defined by

a" = at x Ii = ~(~) vaaa,

Iat I = Ia" I = at := yo + 2 'YII),

(9a)

(9b)

(9c)

(9d)

According to the polar decomposition theorem, the boundary deformation can be
decomposed into a rigid-body translation, a pure strain along principal axes of strain
and a rigid-body rotation of the principal axes. Since the axes defined by "V and t do
not coincide, in general, with the principal axes of strain, the vectors "V and t not only
change their lengths, but also yield rotations during the pure stretch of the principal
axes of strain. Accordingly, the total rotation vector fit of the orthonormal vectors "v,

t and n is composed of the finite rigid-body rotation vector fi, and the finite rotation
vector n of the boundary caused by the pure stretch of the principal axes of strain.
The superposition rules for the finite rotation vectors are different from the usual ad
dition rules for a linear vector space. The relationships between these rotation vectors
are detailed in [7]. In the Lagrangian description, the transformation of "v, t and n into
a v , at and Ii consists of extension by the factor at, which causes no extension in n, and
the two successive rotations: first through Ot, then through fi. The transformation of
the vectors "v, t and n into the vectors a v , at and ii becomes

where

_ _ [ fit x (fit x "V)]
av := at "V + fit x "V + 2 cos2 Wt/2 '

_ _ [ fit x (fit x t)]
at = at t + fit x t + 2 cos2 Wt/2 '

[
fit x (fit x n)]

Ii = n + fit x n + 2 cos2 Wt/2 '

sin W t := I fit I·

(lOa)

(lOb)

(lOc)

(\ I )



Generalized variational principle for thin clastic shells

From eqns (10) we have the following relations:

2 {l,·v = i'n - n·t,
2 {l,·t = n'v - v'n,

2 {l,·n = V·t - i·v,

where the unit vectors v and t are defined as

v = a)a"

i = a/li,.
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(l2a)

(l2b)

(l2c)

(l3a)

(l3b)

Equations (12) will be used in evaluating the external virtual work on the boundary.
For the latter convenience, we decompose the vector p, defined by eqn (3), with respect
to the orthonormal triad v, t and n in the form p = 13vv + 13,t + 13n.

4. INTERNAL VIRTUAL WORK

Let the sheIl be equilibrium under the external surface forces and boundary forces
and couples, the directions of which are assumed to remain constant during defor
mation. The Lagrangian equilibrium equations and the associated static and geometric
boundary conditions for sheIls may be derived from the principle of virtual work. For
any additional virtual displacement vector 8u = 8ua aa + 8wn, subjected to geometric
constraints, there should be Lagrangian symmetric (2nd Piola-Kirchhoff type) stress
resultant tensors Na~ and couple resultant tensors Ma~, such that the Lagrangian in
ternal virtual work takes the form

(14)

Substituting eqns (7) into eqn (14), and using the Stokes theorem, yield

IVW = - IIM T~ 1~'8u cIA + Ie T~ v~'8u ds - Ie Ma~ t~ va n'8u,s ds

- Ie Ma~ Va V13n'8u ,v ds, (15)

where

T~ = ra~ i a + Q~ii,

ra~ = Na~ - b~ MK~ + i (b~ MK~ + b~ MaK),

Q~ = MaK a~~ 'Y~aK + Ma 13 la.

(l6a)

(l6b)

(l6c)

In general, under the Kirchhoff-Love hypothesis, the internal virtual work on the
boundary should be expressed in terms of the variations of the four independent pa
rameters. In the existing literature[6-9, 13], an approximation has been made on the
last term on the right-hand side of eqn (15),. since the inner product n·8u ov could not
have been expressed in terms of the variations of the four independent parameters. As
a result, accurate boundary conditions for the couple could not have been obtained.
In this paper it will be shown after some transformation that the internal and external
virtual works on the boundary can be expressed in terms of the variations of the dis
placement vector and the fourth parameter.
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Let us consider the inner product jH,U,v. Using the definitions

and observing that

(17)

we can write the normal vector after deformation in the form

(\8)

Using the relation a x (b x c) = (a'c)b - (a'b)c, and substituting eqn (18) into eqn
(9b), leads to

where

From eqn (19), we have

-b - a 13-
, - V t aal3'

(19)

(20)

(21)

With the help of eqn (21) and the condition of orthogonality of the vectors av , ar and
ii, the inner product ii'Bu,v is presented by

Denoting the displacement vector with respect to the orthonormal triad

u = uvv + u,t + w n,

the tangent vector of the deformed boundary is written by

where

(22)

(23)

(24)

(2Sa)

(2Sb)

(2Sc)

and cr, denotes a normal curvature, T, a geodesic torsion and Kt a geodesic curvature
of the surface boundary contour C. From the definition av = at x ii and eqn (24), we
may write the inner product 8v '8ii in the form

(26)
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dv = CI (l + ~) - C ~,'

dl = C ~v - Cv (1 + ~),

d = CV ~, - C, ~v.
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(27a)

(27b)

(27c)

It should be stressed that, under the Kirchhoff-Love hypothesis, the variations 8~1

and 8~ are dependent variables of the variations 8u,., and 8~v. Since

JH~ = - 2 n'p,

we have

Forming the variation of eqn (29), we obtain

On the other hand, it follows from 8(81'n) = 0 that

Introducing eqn (30) into eqn (31), the variation 8~, can be expressed in the form

where

(28)

(29)

(30)

(31)

(32)

II = _ 1 + ~
CI (1 + ~) - C ~, '

Cv (1 + ~) - C ~v

Iv = - C
I

(1 + 13) - C ~I •

Substituting eqn (32) into eqn (30), the variation 8~ can be written in the form

where

(33a)

(33b)

(34)

(35a)

(35b)

From eqns (22), (26), (32) and (34), we obtain the inner product n'8u ov , expressed
in terms of the variations 8uos and 8~v as

(36)
SAS22.2·C
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l37a)

(37bl

Using eqn (36) the internal virtual work can be rewritten in the form

where

T = T(3 V(3 + R",

R = R n,

R = MCl(3 Vcl (1(3 - V~ hI)'

(39b)

(39c)

(39dl

0ge)

and Mk, k = 1, 2, ... , K, are corner points of the boundary contour, and Sh denote
the coordinates corresponding to the corner points.

It should be emphasized that the internal virtual work on the bounary can be
expressed in terms of the variations of the displacement vector U and the fourth pa
rameter I3v describing the finite rotation of the shell boundary.

5. EXTERNAL VIRTUAL WORK

Let us consider a shell subjected to the surface force P = pCl acl + po per unit area
of the undeformed middle surface, the boundary force F = Fv l1 + F,t + F 0, and the
bondary couple K = - kt l1 + kvt + k 0 per unit length of the undeformed boundary.
Then the Lagrangian external virtual work can be put in the form[6-9]

EVW = JJM p'OU dA + Ie (F'ou + K-oO,) dS. (40)

The inner product K 'ont must be expressed in terms of the variations of the four
independent parameters. With the help of eqns (12), the inner products of the ortho
normal triad 11, t, 0 and the variation of the total finite rotation vector are expressed by

l1'0n, = ! o(t·o - n·t),

H>O, = ! O(n'l1 - v'n),

0'00 = ! o(v·t - t·l1).

Substituting eqns (32) and (34) into eqns (41) leads to

11'00, = Qv'ou" + Qv ol3v,

t'on, = Q,'ou" + Qt o13v,

n'oO, = Qn'ou" + Qn o13v,

(41a)

(41 b)

(41c)

(42a)

(42b)

(42c)
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where

Qv = qvv 11 +qv, t + qvn 0,

Q, = q,v 11 + ql/ t + qtn 0,

Qn = qnv 11 + qn, t + qnn 0,

Qv =-iIv,

Q, = 2
1
_ (a, - Cv Iv + C,),
a,
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(43a)

(43b)

(43c)

(43d)

(43e)

Q
1

= 2 - (c - Cv gv),a,
(430

(43g)

(43h)

(43i)

(43j)

(43k)

(431)

(43m)

(430)

(430)

Introducing eqns (42) into eqn (40) and integrating by parts, the external virtual work
can be written in terms of the variations 8u and 8[3v as

where

T* = F + R*,s,

M~ = kv Q, - k, Qv + k Qn,

R* = - kv Q, + k, Qv - k Qn,

R j* = R* (Sj + 0) - R*(Sj - 0),

(45a)

(45b)

(45c)

(45d)

and C I is the part of C on which at least one components of T* or M:v is prescribed,
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while MJ,j = 1,2, ... ,J, are those corner points of C where at least one component
of Rj* is prescribed.

6 BASIC SHELL EQUATIONS

The principle of virtual work states that the internal virtual work IVW should be
equal to the external virtual work EVW. Hence, by the use of eqns (38) and (44), we
obtain the Lagrangian equilibrium equations, represented by

T~ I~ + P = 0

and the associated static boundary conditions

inM, (46)

T = T*

*R.i = Rj

and

at each Mj E C I .

(47a)

(47b)

The geometric boundary conditions take the form

*U = U

*Ui = Ui

and

at each M i E C2 ,

(48a)

(48b)

where C2 is the part of C on which at least one component of u* or ~: is prescribed,
while Mi , i = 1, 2, ... , I ~ K, are those corner points of C2 where at least one
component of u7 is prescribed.

Assuming that a shell consists of hyperelastic materials, an elastic potential func
tion I, per unit area of M, exists, such that

(49a)

(49b)

Within the consistent first-approximation theory[l, 6-9], in which strains of the
shell are assumed to be small, the elastic potential function I * is given by

(50)

where

(51)

and h denotes the thickness of the shell, E the Young modulus, and v the Poisson ratio.
Expressing the vector equilibrium equations (46) by the component form in the

bases aa and n, they become

(la'KTK~ + naQ~) I~ - b~(<I>KTK~ + n Q~) + pa = 0,

ba~ (la'KTK~ + naQ~) + (<I>KTK~ + n Q~) I~ + p = o.

(52a)

(52b)

In a similar way, the static boundary conditions of forces in the component form, with
respect to the reference triad of the vectors v, t and n, are written in the form

(53a)
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(T"I3/K. aV13 + Ql3nKv13 + RosnK- Rb~tlJ./K'"'1)tK = F, + l2,s + K,ll - U',13' (53b)

ra13 <l>a vl3 + QI3 n vl3 + R ,s n - R b~tlJ. <1>"'1 = F + 13 " - 'r,/I + U'tI2, (53c)

where

II = - kvq,v + ktqvv - k qv,

12 = - kvqft + ktqv, - k qt,

13 = - kvq,n + k,qvn - k qn'

(54a)

(54b)

(54c)

7. GENERALIZED VARIATIONAL PRINCIPLES

Variational principles have played an important role in a numerical analysis of
shell structures. In the nonlinear shell theory[19-22], several variational functionals
have been constructed. Most of the existing functionals, however, can be available
only to shells with small or moderate rotations. Recently the generalized variational
principles have been derived[20, 21] on the basis of the nonlinear theory obtained by
Pietraszkiewicz and Szwabowicz[14]. As discussed later, the use of a new tensor of
change of curvature employed in [14] indicates that the small-strain assumptions are
introduced from the outset. As a result, the range of the application of the existing
generalized variational principle is limited to shells with small strains.

In this paper the generalized variational principle is derived for the geometrically
nonlinear theory of thin elastic shells with finite rotations and finite strains. For hy
perelastic materials, the internal virtual work can be expressed as a variation of the
elastic potential function: 8 I ('Yal3' Pal3) = N a l3 8'Yal3 + Mal3 8pal3' Since we assume
that the directions ofthe external loads remain constant during deformation, there exist
potential functions et>(u) = - p·u and 'I'(u, ~v) = - (F'u + K'fi,), such that their
variations constitute the external virtual work. In this case the principle of virtual work
can be transformed into a variational principle of the form 81 = 0, where the functional
I is given by

I = JIM [I ('Yal3' Pal3) - P'u] dA - ICI (F'u + K·fi,) dS, (55)

where strain-displacement relations (4), geometric boundary and corner conditions (48)
and the geometric relations expressed by [14]

~, =

~ = -

2 1 2 {cvC,~v + c V[(l + 2'Yft) (l - ~~) - cm, (56a)+ 'Yft - Cv

2 I 2 {evC ~v - c, V[(l + 2'Y,,) (l - ~;) - c;]}, (56b)+ 'Yft - Cv

have to be imposed as subsidiary conditions. On the basis of the functional I, other
functionals will be defined in terms of various sets of independent variables.

Let us introduce the subsidiary conditions (4), (48) and (56) into the functionall,
utilizing the Lagrange multiplier method. Then we obtain the free functional

II = JJM {I ('Yal3' Pal3) - P'u - Na13bal3 - 'Yal3(U)] - Ma13 [Pal3 - Pal3(U)]} dA

- r {F·u + K'fi,(u, ~v, ~" ~) - A,[~, - ~,(u, ~v)] - A[~ - ~(u, ~v)]} dSJCI

- i [p·(u - u*) + M (~v - ~:)] dS - ~ F;'(u; - uf).
C2 ;

(57)
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In the functional II, the independent functions subject to variation are three displace
ments U in M, six displacement parameters u, I)v, 1)1 and I) on C, three displacement
Uk at each corner M k E C, six strain components 'Yal3 and Pal3 in M, six Lagrange
multipliers N a l3 and Ma 13 in M. two Lagrange multipliers hI and h on C I , four Lagrange
multipliers P and M on C2 and three Lagrange multipliers Fi at each corner M, E C2 •

Taking the first variation of II and transforming the results, we have

811 IIM {(:'Y~13 - NUJi) &'YaJi + (:P~13 - Ma
(3

) oPal3 - l-yuJi - 'YuJi(u)]&NuJi

- [Pal3 - Pal3(u)]&Ma13 - (TI3 113 + P)'OU} dA

+ fCI {(T - T*)·ou + Ohl[1)1 - I)I(U, [jv)] + oh[[j - [j(u, [j,,)]

* (1 1 C
v

) (1 C
v

)}+ (Mvv - MvvH>I)" - "2 k l - "2 a
l

kv - hI 01)1 - -"2 a
l

k - h o[j dS

+ fC2 [(T - P)·ou - oP'(u - u*) + (Mvv - M)o[j" - ([jv - [j~)oM] dS

+ ~ [(R7 - Fj)'ouj - oFj'(uj - u7)]
j

+ ~ (Rj - Rj*)·ouj.
j

(58)

(59)

The physical meaning of the Lagrange multipliers are given from eqn (58).
Following the way[19], a number of other free functionals and associated Lagran

gian variational principles may be generated from the functional I I.

8. DISCUSSION

Pietraszkiewicz[13] has compared his results with some close results obtained by
other authors. It has been shown that the shell equations derived in [13] are consistent
with the fully Lagrangian nonlinear shell theory. Therefore it is interesting to compare
the results obtained by Pietraszkiewicz[6-9, 13, 16], Pietraszkiewicz and Szwabow
icz[14] and the present results.

The present equilibrium equations (46) differ slightly from those of [13]. The mixed
curvature tensors b~, appeared in the modified tensors of change of curvature, have
been approximated to the mixed curvature tensors b~ in case of obtaining the equilib
rium equations[13]. As a result a slight difference is found in the definition of the stress
resultant components Ta 13 • If we utilize the tensor of change of curvature K a l3 in place
of Pal3' the resulting equilibrium equations agree with those of [6-9, 13. 16, 18]. On the
other hand, the equilibrium equations of [14] differ significantly from the present ones.
This discrepancy may be caused by the difference of tensors of change of curvature
used. In [14], a new tensor of change of curvature, defined by

Xal3 = - ( ~(~) ba13 - ba13) + bal3'Y~.

has been used. This tensor is a third-degree polynomial in displacements and their
derivatives. The usage of such a new tensor indicates that the small-strain assumptions
are introduced at the stage of the strain-displacement relationships. As discussed in
[14], the small-strain assumptions should not have been introduced at too early a stage,
in order to derive the consistent shell equations. It is preferable, if possible, to utilize
the irrational tensor of change of curvature where no approximation is made.
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(60)

The appropriate geometric boundary conditions have not been derived in [13],
since the additional terms in the virtual work on the shell boundary could not have
been eliminated through integration by parts. As a geometric boundary condition for
rotation[6-9], the parameter (3v defined by (3v == ~'iv, has been prescribed. This pa
rameter is defined with respect to the deformed boundary, and has been used also in
the Eulerian shell equations[6-9]. Such a form of the boundary conditions is incom
patible with other fully Lagrangian shell equations. The present geometric boundary
conditions (48) consist of the three displacement components u and the parameter J3v,
describing the finite rotations at the shell boundary. These expressions agree completely
with those of [14, 16, 18]. Note that the fourth parameter defined by

I3v = ~(~) Ea~ E>.I'- vI'- <l>a l>'.~

is nonlinear with respect to displacements and their derivatives.
As for the static boundary conditions, the appropriate equations have been first

derived in this paper. The effects pertaining to the term iHu JV have not been included
appropriately in the static boundary conditions[6-9, 13]. In [14], as well as [16], instead
of the total finite rotation vector at the boundary, the vector ~ has been used in eval
uating the external virtual work for couple. Therefore the present static boundary con
ditions do not agree with those of [14] and [16]. In case of using the tensor Ka~ instead
of Pa~, the resulting static boundary conditions agree with those of [18].

The functional It obtained in this paper may be called the functional for the Hu
Washizu variational principle. In case of the geometrically nonlinear shell theory, a
number of functionals have been derived[J9-22]. On the basis of the nonlinear shell
theory derived by Pietraszkiewicz[6], a set of 16 basic free functionals without sub
sidiary conditions has been constructed[20]. The Hu-Washizu variational principle for
the first-approximation theory of shells has been derived[21] on the basis of the results
of [14]. The present functional II in eqn (57) is different from the existing ones. In the
existing functionals[19-22], neither the irrational tensor of change of curvature nor the
total finite rotation vector has been employed. Consequently the accurate equilibrium
equations, the associated boundary conditions and other shell equations are not derived
from the existing functionals. While the present functional II yields the accurate basic
shell equations, compatible with the Lagrangian nonlinear theory of shells undergoing
finite rotations.
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